Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin.
نویسندگان
چکیده
The FET3 gene product of Saccharomyces cerevisiae is an essential component of the high affinity iron transport system. Based on FET3 sequence homology to the multicopper oxidase family and iron oxidation studies in spheroplasts (De Silva, D. M., Askwith, C. C., Eide, D., and Kaplan, J. (1995) J. Biol. Chem. 270, 1098-1101), it was hypothesized that the Fet3 protein (Fet3p) was a cell surface ferroxidase. To further characterize the protein, we have isolated Fet3p from yeast membranes and purified the protein to apparent homogeneity. Consistent with its localization at the plasma membrane, Fet3p is a glycosylated protein. SDS-polyacrylamide gel electrophoresis analysis showed that the protein was present in two differentially glycosylated forms of approximately 120 and 100 kDa. Purified Fet3p is a copper-containing protein that is able to catalyze the oxidation of a variety of organic compounds in addition to ferrous iron. Azide and metal chelators strongly inhibited enzyme activity. Iron appeared to be the best substrate for the enzyme, and the apparent Km for ferrous oxidation was 2 microM. Interestingly, Fet3p was able to effectively catalyze the incorporation of iron onto apotransferrin. We conclude that Fet3p is a ferro-O2-oxidoreductase in yeast, homologous to the human plasma protein ceruloplasmin.
منابع مشابه
PURIFICATION AND CHARACTERIZATION OF CELL WALLMANNOPRO TEINS OF CANDIDA ALB/CANS USING INTACT CELL METHOD
Virulence of the opportunistic yeast, Candida albieans, involves the interplay of many complex changes including the yeast-hyphae transition, which mainly involves protein changes. Cell wall mannoproteins are found to be the main cause of adherence of C. albieans to epithel ial cells in the first step of an infection process. In the present study, cell wall mannoproteins of intact yeast wer...
متن کاملFunctional studies of hephaestin in yeast: evidence for multicopper oxidase activity in the endocytic pathway.
Hephaestin is a mammalian gene that encodes a predicted multicopper oxidase required for intestinal iron export. To examine if hephaestin can act as a ferroxidase, we studied yeast strains transformed with plasmids containing both a full-length hephaestin and a hephaestin lacking a transmembrane domain. Yeast with a deletion in FET3, which encodes a cell-surface multicopper oxidase, cannot grow...
متن کاملFre1p Cu Reduction and Fet3p Cu Oxidation Modulate Copper Toxicity in Saccharomyces cerevisiae*
Fre1p is a metalloreductase in the yeast plasma membrane that is essential to uptake of environmental Cu and Fe . Fet3p is a multicopper oxidase in this membrane essential for high affinity iron uptake. In the uptake of Fe , Fre1p produces Fe that is a substrate for Fet3p; the Fe produced by Fet3p is a ligand for the iron permease, Ftr1p. Deletion of FET3 leads to iron deficiency; this deletion...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملTargeted Deletion of Los1 Homologue Affects the Production of a Recombinant Model Protein in Pichia pastoris
Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 22 شماره
صفحات -
تاریخ انتشار 1997